Maths Calculation Policy Guidance

Written methods of calculation for Addition.

Step 1
Concrete addition
This step requires the children to combine
two groups of objects or images.
Eg. Count out 3, add two more. How many do
we hou

Use of fingers is encouraged as this is a constantly available resource.

The number sentence should be related to the objects/pictures/fingers whenever possible. Eg. 3 teddies +2 teddies $=5$ teddies Children need to be able to verbalise calculations in 'everyday language' before introducing symbols e.g. 'I had 3 teddies and you gave me 2 more. Now I've got 5'

For example: $3+2=5$

For example
$5+1=6$

When discussing problems, this should also be introduced as a bar model, initially drawn round the objects and then blank.

Step 2

Counting on

This step requires the children to realise that there is no need to count from the start each time. They combine a hidden number with a concrete number ie. The first number in their head, the second on their fingers, or 6 cakes already in a box, if I add 2 more, how many do I have now?

They should be encouraged to discover that it is easier to put the biggest number in their heads.

This is to be recorded on a numbered number line.

When discussing problems, this should also be introduced with the use of a bar model as above.
Step 3

Empty number line

This step requires the children to record addition on a blank number line.

The steps should be extended so that they bridge through a multiple of ten.

Additions should involve single digit numbers as well as two and three digit numbers. The method can also be used for adding decimals.

Children should be encouraged to use their knowledge of number bonds here e.g. if I'm adding $17+8$ and I know the pairs that make 8 and I know what to add to 17 to get to the next ten, I would probably think of $17+8$ as $17+3+5$

For example: $5+4=9$

$6+$
$2=$?
$8+5=13$

1: $\frac{1}{1}$ ख्य 5 6िके वें

For example:
$48+36=84$

$25+47=72$

Short method

This method requires the children to set the calculation out in a column (being careful to ensure correct place value).

When adding, the children are required to begin with the units, and carry using correct language such as 'carry ten' or 'carry one hundred'. The number carried should be recorded below the line.

This method should be extended to addition of 3,4 and 5 digit numbers as well as decimals, and can be extended to adding more than two numbers.

Use of straws, Base 10 or Place Value counters can continue to be used to reinforce the value of each digit. Placed onto a grid clearly marked as appropriate.

Problem solving should continue to include the use of bar modelling to aid visualisation as in previous steps.

For example:
367
$+185$ 552
11
3587
$+675$
4262
111
72.8
$+54.6$
127.4

11
13.86
$+\quad 9.481$
23.341

111

Written methods of calculation for Subtraction.

Step 1	For example:
Concrete subtraction	
This step requires the children to physically	
take away one or more objects from a set of	
objects.	
Children will also cross out images to take	
away.	
Use of fingers is encouraged as this is a	
constantly available resource.	

The number sentence should be related to the objects/pictures/fingers whenever possible. Eg. 5 teddies -2 teddies $=3$ teddies

When discussing problems, this should also be introduced as a bar model, initially drawn round the objects, then blank.
When discussing problems, this should also
be introduced with the use of a bar model
as above.
Counting back on a numbered number line
This step requires the children to use a
numbered number line to work out one less
or several less than a given number.

Counting on using a blank number line

This step introduces the idea of finding the difference and requires the children to count up on a blank number line.

The number of jumps can be reduced as the children become more proficient. This is especially needed when moving on to two or three-digit numbers.

Children should be taught to use a combination of Steps $3 \& 4$ depending on the question. Eg to calculate 168-27 it makes sense to count backwards but if I was calculating 168-149 I'm more likely to count forwards (find the difference)

Problem solving should continue to include the use of bar modelling to aid visualisation.

For example:
$74-27=47$

$326-178=148$

What is the difference between 63 and 45 ?
How many more is 63 from 45?
How many less is 45 from 63?

Step 5

Expanded column method

This step requires the children to partition the numbers and then subtract the lowest value digits first.

It should be used to introduce the idea of decomposition and carrying.

This method should be used for two and three-digit numbers and can be extended to decimals.

Use of straws, Base 10 or Place Value counters should be used to reinforce the value of each digit.

These should be placed onto a grid clearly marked with Hundreds, Tens, Units (as appropriate)

Problem solving should continue to include the use of bar modelling to aid visualisation as in previous steps.

For example:

$$
77-24=53
$$

$70 \quad 7$
$-\quad 20 \quad 4$
$50 \quad 3$

Using straws:

$761-347=414$

Step 6
Short method (decomposition)

This step requires the children to set the calculation out in a column (being careful to ensure correct place value).

They should subtract the right hand column (units) first and carry from the left hand side column if needed.

Use of straws, Base 10 or Place Value counters should be used to reinforce the value of each digit as before.

This method can be used for any number of digits as well as decimals.

Problem solving should continue to include the use of bar modelling to aid visualisation as in previous steps.

For example:
$537-214=323$
537
-214
-323
$728-51=677$
$\begin{array}{r}{ }^{6} / 728 \\ -\quad 51 \\ \hline 677\end{array}$

Use of place value counters when carrying:

Written method:
$352-168=$

		$2^{1} 4$	
352	$35^{1} 2$	$35^{1} 2$	$35^{1} 2$
-168			
	-168	-168	-168
		184	184

Written methods of calculation for Multiplication.

\square

Step 2	
Arrays This step requires the children to use objects or pictures in arrays. It should be extended to arrays of dots or circles.	For example: $\begin{aligned} & 2 \times 3=6 \\ & 3 \times 2=6 \end{aligned}$ $\begin{aligned} & 3 \times 4=12 \\ & 4 \times 3=12 \end{aligned}$ $\begin{aligned} & 3 \times 6=18 \\ & 6 \times 3=18 \end{aligned}$
Step 3	
Repeated addition on number line This step requires the children to show repeated addition using number lines. Counting in steps of \qquad should be practised at this point. Fingers can be used to keep track of how many lots of \qquad you have counted. Problem solving should include the use of bar modelling to aid visualisation.	For example: $4 \times 3=12$ Counting in 5's: $" 5, \quad 10,15, \quad 20 "$ Problem solving: Pencils come in packs of 6 . If I buy 5 packs, how many pencils do I have?

$56 \times 2.3=128.8$

$815 \times 34=$

x	800	10	5
30	24000	300	150
4	3200	40	20

24000
300
150
3200
40
20
27710

Step 6

Extended column method

This step requires the children to set the calculation out on in column and then multiply each partition together (units, then tens, then hundreds) before adding the partial calculation together.

This method should be extended to multiplication by two and three digit numbers, and multiplication of decimals.

Children should describe what they do by referring to the actual values of the digits in the columns. For example, in 38×7 is 'thirty multiplied by seven', or 'three tens times 7 units', not 'three times seven', although the relationship to 3×7 should be stressed.

For example:

$38 \times 7=266$

HTU		
38	32	
X 7	$\times 24$	
56	8	(4×2)
56	120	(4×30)
210	40	(20×2)
266	600	(20×30)
	768	

$286 \times 29=8294$

THTU
286
$\times \quad 29$
54
720
1800
120
1600
4000
8294

Step 7

Short Method for X U	For example:	
	$38 \times 7=266$	$934 \times 6=5604$
This step requires the children to use carrying to shorten the method. This method can be used effectively for	HTU 38	934
multiplication of decimals.	$\begin{array}{r} \\ \times \quad 7 \\ \hline 266\end{array}$	5604
The carried number should be placed underneath the appropriate column	266	22
	$237 \times 4=948$	
	237	
	$\times \quad 4$	
	$\overline{948}$	

Step 8	
Short Method for x TU This method requires the children to multiply the larger number by the units and then the larger number by the tens, and so on, before adding the two numbers together. Carried numbers should once again be placed underneath the appropriate column..	

Written methods of calculation for Division.

Concrete Grouping

The children should recognise division as grouping as well as sharing. This can be done with objects or images.

Language should be extended to : How many groups of \qquad can we get out of \qquad ?

The division number sentence should be shown alongside the calculations.

Remainders are expressed as 1 left, 2 left There is also a need in some problems which leave a remainder to round up or down. Eg. How many bags do I need / how many full bags have I got, etc

When discussing problems, this should also be introduced as a bar model as above.

For example:
$12 \div 4=3$ (How many groups of 4 are there in 12?

$16 \div 4=4$

Step 3
Grouping on a number line

This step requires the children to count along a number line in relevant groups.

This step should be extended to not using the number line and using tables knowledge
or counting strategies.

Remainders are referred to as remainders, but should be rounded up or down if appropriate to the problem.

Counters should be used to group/share if needed.

Step 4

$$
45 \div 9=5
$$

$25 \div=5=5$

$$
25 \div 5=5
$$

For example:

Use of arrays for division

This step requires the children to have the opportunity to explore how division relates inversely to multiplication. Use of arrays can highlight the links.

Initially, they can identify the number family associated with the array.

They can then be introduced to the more formal way of writing a division sum at this stage 'bus stop method'

3

The array is an image for division too

7

8
$7 \lcm{56}$

Step 6	
Short method for $\div \mathrm{U}$ ('Bus stop method') This step requires the children to carry remainders within the calculation to make it more efficient. It should be used to divide TU, HTU, ThHTU as well as decimals. The method should initially be taught alongside step 5 so the children understand what they are carrying and why. Decimal places should be added to show remainders as decimals. When problem solving, remainders should be rounded up or down if appropriate. Children can also be taught how to express remainders as fractions.	For example:
Step 7	
Short method for \div TU This step requires the children to divide by TU. It requires the same method as step 5 although the children should be encouraged to write the tables of the divisor.	For example:

Alternative method for carrying (long division)

Step 3: A remainder in the tens

In this step, students practice for the first time all the basic steps of long division algorithm: divide, multiply \& subtract, drop down the next digit. We use two-digit numbers to keep it simple. Multiply \& subtract has to do with finding the remainder, and after finding a remainder, we combine that with the next unit we are getting ready to divide (dropping down the digit).

An example:

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} \frac{10}{2} \\ 2 \longdiv { 5 8 } \end{gathered}$ Two goes into 5 two times, or 5 tens $\div 2=2$ whole tens - but there is a remainder!	$\begin{gathered} t \circ \\ 2 \\ 2 \longdiv { 5 8 } \\ -\frac{4}{1} \end{gathered}$ To find it, multiply $2 \times 2=4$, write that 4 under the five, and subtract to find the remainder of 1 ten.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -41 \\ \hline 18 \end{array}$ Next, drop down the 8 of the ones next to the leftover 1 ten. You combine the remainder ten with 8 ones, and get 18 .

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -44 \\ \hline 18 \end{array}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -48 \\ \hline 18 \\ -18 \end{array}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract.	$\begin{array}{r} \mathrm{t} \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -48 \\ -48 \\ -18 \end{array}$ The division is over since there are no more digits in the dividend. The quotient is 29 .

Step 4: A remainder in any of the place values

After the previous step has been mastered, students then practice long division with three-and four-digit numbers where they will have to go through the basic steps several times.

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} h t \circ \\ 2 \longdiv { 1 } \\ 2 \longdiv { 2 7 8 } \end{gathered}$ Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	$\begin{gathered} \frac{h t \circ}{1} \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{0} \end{gathered}$ Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	$\begin{gathered} h t o \\ 2 \longdiv { 2 7 8 } \\ =-\frac{2}{0} \frac{1}{7} \end{gathered}$ Next, drop down the 7 of the tens next to the zero.
Divide.	Multiply \& subtract.	Drop down the next digit.
$\begin{gathered} h t o \\ 2 \longdiv { 2 7 8 } \\ =\frac{2}{07} \end{gathered}$ Divide 2 into 7. Place 3 into the quotient.	$\begin{gathered} \begin{array}{c} h t o \\ 13 \\ 2 \longdiv { 2 7 8 } \\ =-\frac{2}{0} 7 \\ = \\ =\frac{6}{1} \end{array} \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	$\begin{gathered} \begin{array}{c} h t o \\ 13 \\ 2 \longdiv { 2 7 8 } \\ =-\frac{2}{07} \\ =\frac{6}{18} \end{array} \end{gathered}$ Next, drop down the 8 of the ones next to the 1 leftover ten.
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{aligned} & h t o \\ & 139 \\ & 2 \longdiv { 2 7 8 } \\ & =-\frac{2}{0} \\ & =\frac{6}{18} \end{aligned}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{gathered} h t \circ \\ 2 \longdiv { 1 3 9 } \\ 278 \\ =\frac{2}{0} 7 \\ =\frac{6}{18} \\ -\frac{-18}{0} \end{gathered}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	$\begin{aligned} & h t \circ \\ & 2 \longdiv { 1 3 9 } \\ & =\frac{2}{078} \\ & =\frac{6}{18} \\ & -\frac{18}{0} \end{aligned}$ There are no more digits to drop down. The quotient is 139 .

Notes for all calculations:

It is vitally important that children begin to use known facts and derive new facts from these as soon as possible.

Eg.
If I know that $2+3=5$, then I also know that $3+2=5$.
From this I can work out that $5-3=2$ and $5-2=3$.
I can also see that $20+30=50,30+20=50,50-30=20 \& 50-20=30$

Children need to understand the relationship between operations.
Eg. subtraction is the opposite of addition, and division is the opposite of multiplication.

This bar model shows the relationship between addition and subtraction.
$a+b=c$
$b+a=c$
$\mathrm{c}-\mathrm{a}=\mathrm{b}$
$\mathrm{c}-\mathrm{b}=\mathrm{a}$

This bar model shows the relationship between
multiplication and division.
$5 \times n=p$
$p \div 5=n$

Date of Policy Adoption Reviewed	Responsibility / Reviewed by	Revisions Made (Y/N)	Method of Communication	Date of Next Review
Jul 2021	FGB	N	Website	Jul 2024

