Hemingbrough Primary School Calculation Framework - Working Document

Mathematics Mastery

 concrete materials and pictorial representations. This policy outlines the different calculation strategies that should be taught and used in Year 1 to Year 6 in line with the requirements of the 2014 Primary National Curriculum

Background

Mathematical Language

The 2014 National Curriculum is explicit in articulating the importance of children using the correct mathematical language as a central part of their learning (reasoning). Indeed, in certain year groups, the non-statutory guidance highlights the requirement for children to extend their language around certain concepts. It is therefore essential that teaching using the strategies outlined in this policy is accompanied by the use of appropriate and precise mathematical vocabulary. New vocabulary should be introduced in a suitable context (for example, with relevant real objects, apparatus, pictures or diagrams) and explained carefully. High expectations of the mathematical language used are essential, with teachers only accepting what is correct. The school agreed list of terminology is located at Appendix A to this document

The quality and variety of language that pupils hear and speak are key factors in developing their mathematica vocabulary and presenting a mathematical justification argument or proof.

2014 Maths Programme of Study

How to use the framework

 scheme of work from NCETM and White Rose Maths and are required to base their planning around their year groups modules and not to move onto a higher year groups scheme work.

 understanding of a mathematical concept, they need to master all three phases within a year group's scheme of work.

Content of the Policy

For ease of movement, many items in this document have been hyperlinked, including the contents below. By clicking on the hyperlink, you can more easily navigate through the document.

1. Addition
2. Subtraction
3. Multiplication
4. Division
5. Mathematical Language
6. Glossary

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model			10=6+4
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10.	$6+5=11$ Start with the bigger number and use the smaller number to make 10.	Use pictures or a number line. Regroup or partition the smaller number to make 10.	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?
Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.		$\begin{aligned} (4+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

Column method- no regrouping	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	Calculations $\begin{array}{r} 21+42= \\ 21 \\ +42 \end{array}$
Column method- regrouping	Make both numbers on a place value grid. 146 Add up the units and +527 exchange 10 ones for one 10. Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added. This can also be done with Base 10 to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100. As children move on to decimals, money and decimal place value counters can be used to support learning.	Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding.	Start by partitioning the numbers before moving on to clearly show the exchange below the addition. $\begin{aligned} & 20+5 \\ & 40+8 \\ & \hline 60+13 \end{aligned}=73 \quad \begin{array}{r} 536 \\ \frac{+85}{11} \end{array}$ As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here.

Objective and Strategies

Part Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part part whole model.	5 10 Move to using numbers within the part whole model.
Make 10	Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5 . You are left with the answer of 9 .	 Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off?
Column method without regrouping	Show how you partition numbers to subtract. Again make the larger number first.	Draw the Base 10 or place value counters alongside the written calculation to help to show working.	$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction.
Column method with regrouping	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters Start with the ones, can I take away 8 from 4 easily? I need to exchange one of $m y$ tens for ten ones.	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make.	Children can start their formal written method by partitioning the number into clear place value columns.

Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.

Now I can take away eight tens and complete my subtraction

Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount
Step 2
Step 2
lo
lo
lol
lol understands the method and knows when to exchange/regroup

$728-582=146$

H T u
${ }^{6} \not 7 \quad 12 \quad 8$

Objective and Strategies

	 Then you have your answer.		
Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods. $\begin{aligned} & 8 \times 59 \\ & =8 \times 60-8 \\ & 8 \times 6=48 \\ & 8 \times 60=480 \\ & 480-8=472 \end{aligned}$ $250 \mathrm{mat} \mid \longrightarrow$ $\begin{gathered} 4+4+8+8+16 \\ 5 \times 8=40 j u q 6 \end{gathered}$	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer.$\begin{aligned} & 32 \\ & \times \quad 24 \\ & \hline 8(4 \times 2) \\ & 120(4 \times 30) \\ & 40(20 \times 2) \\ & 600(20 \times 30) \end{aligned}$$\times$ 6 3 1 2 2 1 0 2 4 0 + 2 0 0 4 6 6 2 This moves to the more compact method. $\begin{array}{r} 1342 \\ \times \quad 18 \\ \hline 13420 \\ 10736 \\ \hline 24156 \\ \hline \end{array}$

Objective and Strategies
(

Correct Mathematical Language

High expectations of the mathematical language used are essential, with staff only accepting what is correct. Consistency across the school is key:

Correct Terminology	Incorrect Terminology
ones	units
is equal to (is the same as)	equals
zero	oh (the letter o)
exchange exchanging regrouping	stealing
borrowing	
calculation equation	generic term of 'sum' or 'number sentence'
known	
unknown	
whole	
part	

Concept	Definition
Acute	Describes angles between 0 and 90 degrees.
Adjacent	Adjoining (as used to describe lines and angles).
Alternate	Every other one in a sequence.
Angle	The number of degrees rotated around a point.
Area	The amount of space within a perimeter (expressed in square units).
Ascending order	The arrangement of numbers from smallest to largest.
Average	A number representing a set of numbers (obtained by dividing the total of
the numbers by the numbers itself).	
Axis of symmetry	A line dividing a shape into two symmetrical parts.

Concept	Definition
Baker's dozen	The colloquial name given to the number 13.
Base	The line or face on which a shape is standing.
Base angles	Those angles adjacent to the base of a shape.
Bisect	To divide into two equal parts.
Breadth	Breadth is another name for width. It is the distance across from side to
side.	

Concept	
Capacity	Definition
Cardinal number	The amount of space in an object (the amount of liquid or air it contains).
Carroll Diagram	A number that shows quantity but not order.
Circumference	A number that shows quantity but not order.
Composite number	The distance around a circle (its perimeter).
Congruent	A number with more than two factors.
Consecutive	Congruent shapes are the same shape and size (equal).
Coordinates	Consecutive numbers follow in order without interruption (e.g. 2,3,4,5).
	Numbers used to locate a point on a grid.

Glossary

Concept	Definition
Denominator	The number below the line in a fraction.
Descending order	The arrangement of numbers from the largest to smallest.
Diagonal	A straight line connecting two non- adjacent vertices (corners) of a polygon.
Difference	By how much a number is bigger or smaller than another.
Digit	Any number from 0 to 9 (inclusive).
Digital root	The digital root of 58 is 4 because $5+8=13$ and $1+3=4$
Dimensions	The measurements of a shape (i.e. length, width, height).
Dodecagon	A twelve sided polygon.

Concept	Definition
Edge	The intersection of two faces of a three-dimensional object.
Equation	A statement of equality between two expressions (e.g. $3 \times 4=6+6$).
Equilateral triangle	A triangle with congruent (equal) sides and angles.
Even number	A positive or negative number exactly divisible by 2.
Exterior	Outside.

Concept	Definition
Face	A plane surface of a three-dimensional object.
Face value	The numeral itself despite its position in a number (e.g. the face value of 8
in 38,250 is 8).	
Factor	A number which will divide exactly into another number.

Concept	Definition
Greater than	An inequality between numbers. The symbol used to represent greater than is an arrow pointing towards the smallest number.
Gross	The name given to the number 144.

Glossary

Concept	Definition
Hendecagon	A two dimensional shape with eleven sides and eleven angles also called an
undecagon.	

Concept	Definition
Kite	A quadrilateral that has two adjacent pairs of sides that are equal in length, and at least one pair of opposite angles are equal.

Concept
Less than

Lozenge

Definition

An inequality between numbers. The symbol used to represent less than is an arrow pointing towards the smallest number.

Another name for a rhombus.

Glossary

Concept	Definition
Mean	The average of a set of numbers. The sum of the values in a set of data divided by the total number of items in that set.
Median	The middle value of a set of ordered data.
Mode	The value that occurs the most often in a set of data
Multiple	The product of a given number with another factor.
Concept	Definition
Numerator	The number above the line in a fraction.
Concept	Definition
Oblique	Oblique means sloping or slanting.
Oblong	A shape with two pairs of straight, unequal sides and four right angles. Also known as a rectangle.
Obtuse angle	An angle between 90 and 180 degrees.
Octagon	A polygon with eight sides and eight angles.
Odd number	A number that when divided by two leaves a remainder of one.
Ordinal number	Describes a position in a number sequence.

Glossary

Concept	Definition
Parallel lines	Lines with no common points and always the same distance apart.
Parallelogram	A four-sided polygon with opposite sides equal and parallel and the
opposite angles are equal in size.	

Concept	
Quadrant	A quarter of the area of a circle whitich also contains a right angle.
Quotient	The result when one number is divided by another number.
Quindecagon	A polygon with fifteen sides and fifteen angles.

Concept	Definition
Rectangle	A quadrilateral with opposite sides equal and parallel and containing four right angles
Reflex angle	An angle greater than 180 degrees.
Rhombus	A parallelogram with congruent sides. Opposite sides are parallel and opposite sides are equal in size.
Roman numerals	Seven letters are used in combination to write numbers: $I=1 \mathrm{~V}=5 \mathrm{X}=10 \mathrm{~L}=50 \mathrm{C}=100 \mathrm{D}=500 \mathrm{M}=1000$
Rotational symmetry	A shape is said to have rotational symmetry if it looks the same in different positions when rotated about its centre.
Rounding	An approximation used to express a number in a more convenient way.

Glossary

Soncept	Definition
Scalene triangle	A triangle that has three sides of different length and no equal angles.
Score	The name given to the number 20.
Squared	A number squared is a number multiplied by itself.
Square number	A number whose units can be arranged into a square (e.g.
Sum	The result when two or more numbers are added together.
Symmetrical	A shape is symmetrical if it is identical on either side of a line dividing it into
two parts.	

Concept	
Tally	A record of items using vertical and oblique lines to represent each item.
Tetragon	A four sided shape.
Tessellation	Shapes fitted together with a number of exact copies and with no overlaps or gaps.
Translation	This takes place when a shape is moved from one place to another just by sliding it (without rotating, reflecting or enlarging).
Trapezium	A quadrilateral with two parallel sides.

Concept

Definition

The point at which two or more line segments or two or more edges of a polyhedron meet.
A line which is at right angles to a horizontal line.

