Written methods of calculation for Addition.

Step 1
Concrete addition

This step requires the children to combine two groups of objects or images.
Eg. Count out 3, add two more. How many do we have now?

Use of fingers is encouraged as this is a constantly available resource.

The number sentence should be related to the objects/pictures/fingers whenever possible. Eg. 3 teddies +2 teddies $=5$ teddies
Children need to be able to verbalise calculations in 'everyday language' before introducing symbols e.g. 'I had 3 teddies and you gave me 2 more. Now I've got 5'

When discussing problems, this should also be introduced as a bar model, initially drawn round the objects and then blank.

Step 2
Counting on
This step requires the children to realise
that there is no need to count from the

They should be encouraged to discover that it is easier to put the biggest number in their heads.

This is to be recorded on a numbered number line.

When discussing problems, this should also be introduced with the use of a bar model as above.

$$
\begin{aligned}
& \text { For example: } 3+2=5 \\
& +\infty=5
\end{aligned}
$$

$5+1=6$

$8+5=13$

$3+4=7$

Step 3
Empty number line
This step requires the children to record

The steps should be extended so that they bridge through a multiple of ten.

For example:

$$
48+36=84
$$

Additions should involve single digit numbers as well as two and three digit numbers. The method can also be used for adding decimals.

Children should be encouraged to use their knowledge of number bonds here e.g. if I'm adding $17+8$ and I know the pairs that make 8 and I know what to add to 17 to get to the next ten, I would probably think of $17+8$ as $17+3+5$

Use of straws, Base 10 or Place Value counters should be used to reinforce the value of each digit.

Problem solving should include the use of bar modelling to aid visualisation.

Step 4
Partitioning
This step requires the children to

This method can be used for 3 digit numbers and decimals.

Use of straws, Base 10 or Place Value counters should be used to reinforce the value of each digit.

Problem solving should include the use of bar modelling to aid visualisation as above.

For example:
$47+76$
$40+70=110$
$7+6=13$
$110+13-123$
$324+241$
$300+200=500$
$20+40=60$
$4+1=5$
$500+60+5=561$
$45.3+56.8$
$40+50=90$
$5+6=11$
$.3+.8=1.1$
$90+11+1.1=102.1$

Step 5	
Extended column This step requires the children to set the calculation out in a column (being careful to ensure correct place value). They are then required to add the lowest value digit first, recording the answer below before moving to the other digits and adding the partial sums. This method can be used when adding 2, 3 or 4 digit numbers as well as decimals. Use of straws, Base 10 or Place Value counters should be used to reinforce the value of each digit. These should be placed onto a grid clearly marked with Hundreds, Tens, Units (as appropriate) Problem solving should continue to include the use of bar modelling to aid visualisation as in previous steps.	For example: $\begin{array}{rr} 83 \\ + & \\ +\frac{42}{5} & \\ \frac{120}{125} & \\ 367 & 14.28 \\ +\frac{185}{12} & \frac{+17.56}{0.14} \\ 140 & 0.70 \\ \frac{400}{552} & 1100 \\ \hline \end{array}$ Example using straws on a calculation mat:
Step 6	
Short method This method requires the children to set the calculation out in a column (being careful to ensure correct place value). When adding, the children are required to begin with the units, and carry using correct language such as 'carry ten' or 'carry one hundred'. The number carried should be recorded below the line. This method should be extended to addition of 3, 4 and 5 digit numbers as well as decimals, and can be extended to adding more than two numbers. Use of straws, Base 10 or Place Value counters can continue to be used to reinforce the value of each digit. Placed onto a grid clearly marked as appropriate. Problem solving should continue to include the use of bar modelling to aid visualisation as in previous steps.	For example: $\begin{array}{r} 367 \\ +185 \\ \hline \frac{552}{11} \\ \hline 3587 \\ +\frac{675}{4262} \\ \hline 111 \\ \\ 72.8 \\ +54.6 \\ \hline \frac{127.4}{11} \\ \hline 13.86 \\ +\frac{9.481}{23.341} \\ \hline 111 \end{array}$

Written methods of calculation for Subtraction.

Step 1
Concrete subtraction
This step requires the children to
physically take away one or more
objects from a set of objects.
Children will also cross out images to
take away.
Use of fingers is encouraged as this is a constantly available resource. The number sentence should be related to the objects/pictures/fingers whenever possible. Eg. 5 teddies -2 teddies $=3$ teddies When discussing problems, this should also be introduced as a bar model, initially drawn round the objects, then blank.
When discussing problems, this should also be introduced with the use of a bar model as above.
Step 2
This step requires the children to use a
number line

Written methods of calculation for Multiplication.

| Step 2 | For example: |
| :--- | :--- | :--- |
| Arrays | |
| This step requires the children to use | |
| objects or pictures in arrays. | |
| It should be extended to arrays of dots | |
| or circles. | |
| $3 \times 2=6$ | |

Extended column method	For example:		
This step requires the children to set the calculation out on in column and then multiply each partition together (units, then tens, then hundreds) before adding the partial calculation together. This method should be extended to multiplication by two and three digit numbers, and multiplication of decimals. Children should describe what they do by referring to the actual values of the digits in the columns. For example, in 38×7 is 'thirty multiplied by seven', or 'three tens times 7 units', not 'three times seven', although the relationship to 3×7 should be stressed.	$\begin{gathered} 38 \times 7=266 \\ H T U \\ 38 \\ \times 7 \\ \hline 56 \\ 210 \\ \hline 266 \\ \\ \\ 286 \times 29=8294 \\ T H T U \\ 286 \\ \times \quad 29 \\ \hline 54 \\ 720 \\ 1800 \\ 120 \\ 1600 \\ 4000 \\ \hline 8294 \\ \hline \end{gathered}$	$\begin{array}{r} 32 \\ \times 24 \\ \hline 8 \\ 120 \\ 40 \\ 6000 \\ \hline 768 \end{array}$	$\begin{aligned} & (4 \times 2) \\ & (4 \times 30) \\ & (20 \times 2) \\ & (20 \times 30) \end{aligned}$
Step 7			
Short Method for x U This step requires the children to use carrying to shorten the method. This method can be used effectively for multiplication of decimals. The carried number should be placed underneath the appropriate column	For example: $38 \times 7=266$ HTU 38 $\begin{array}{r} \times \quad 7 \\ \hline 266 \\ \hline \end{array}$ $237 \times 4=948$ $\begin{array}{r} 237 \\ \times \quad 4 \\ \hline 948 \end{array}$	$\begin{array}{rl} 934 \times 6= & 5604 \\ \text { Th } & \\ 9 & 3 \\ 9 & 3 \\ & \\ \hline \end{array}$	

Step 8	
Short Method for x TU This method requires the children to multiply the larger number by the units and then the larger number by the tens, and so on, before adding the two numbers together. Carried numbers should once again be placed underneath the appropriate column..	

Written methods of calculation for Division.

Step 1
Concrete Sharing
The first step requires the children to
use objects or images to share.
Language should be extended to:
shared by
The division number sentence should
be shown alongside the calculations.
Remainders are expressed as 1 left, 2
left etc.

When discussing problems, this should also be introduced as a bar model, initially drawn round the objects, then blank.

For example:
$6 \div 2=3$ (six shared by 2)

$21 \div 3=7$

$15 \div 5=3$

I have 10 sweets, if I share them between 5 people, how many do they get each?

Step 2	
Concrete Grouping	For example:

The children should recognise division as grouping as well as sharing. This can be done with objects or images.
Language should be extended to : How many groups of \qquad can we get out of \qquad ?
The division number sentence should be shown alongside the calculations.
Remainders are expressed as 1 left, 2 left There is also a need in some problems which leave a remainder to round up or down. Eg. How many bags do I need / how many full bags have I got, etc

For example:
$12 \div 4=3 \quad$ (How many groups of 4 are there in 12 ?

$16 \div 4=4$

When discussing problems, this should also be introduced as a bar model as above.

Step 3	
Grouping on a number line	
This step requires the children to count along a number line in relevant groups.	For example: $45 \div 9=5$
This step should be extended to not using the number line and using tables knowledge or counting strategies.	$25 \div=5=5$
Remainders are referred to as remainders, but should be rounded up or down if appropriate to the problem. Counters should be used to group/share if needed.	$\begin{aligned} & 25 \div 5=5 \\ & 01 \\ & 15 \\ & 15 \\ & 10 \\ & 10 \\ & 15 \\ & 15 \\ & \hline 15 \\ & \hline 15 \\ & \hline 15 \end{aligned}$
Step 4 Use of arrays for division	
This step requires the children to have the opportunity to explore how division relates inversely to multiplication. Use of arrays can highlight the links.	$3 \begin{array}{ll} \frac{2}{00} & 2 \times 3=6 \\ \begin{array}{ll} 00 & 3 \times 2=6 \\ 060 & 6 \div 3 \\ 0 & 6 \div 2 \end{array} \\ 00 & 6 \div 3 \end{array}$
Initially, they can identify the number family associated with the array.	The array is an image for division too
They can then be introduced to the more formal way of writing a division sum at this stage 'bus stop method'	

 hundreds can I make from the hundreds; how many groups of 3-tens can I make from the tens, etc

The method should be extended to questions that require carrying.

The method should be used alongside step 6 to ensuring understanding of both.

Remainders should be rounded up or down if appropriate to the problem.

Step 6	
Short method for \div U ('Bus stop method') This step requires the children to carry remainders within the calculation to make it more efficient. It should be used to divide TU, HTU, ThHTU as well as decimals. The method should initially be taught alongside step 5 so the children understand what they are carrying and why. Decimal places should be added to show remainders as decimals. When problem solving, remainders should be rounded up or down if appropriate. Children can also be taught how to express remainders as fractions.	For example:
Step 7	
Short method for \div TU This step requires the children to divide by TU. It requires the same method as step 5 although the children should be encouraged to write the tables of the divisor.	For example:

Alternative method for carrying (long division)

Step 3: A remainder in the tens

In this step, students practice for the first time all the basic steps of long division algorithm: divide, multiply \& subtract, drop down the next digit. We use two-digit numbers to keep it simple. Multiply \& subtract has to do with finding the remainder, and after finding a remainder, we combine that with the next unit we are getting ready to divide (dropping down the digit).

An example:

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -44 \\ \hline 18 \end{array}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -48 \\ \hline 18 \\ -18 \end{array}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract.	$\begin{array}{r} \mathrm{t} \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{18} \\ -18 \\ \hline 0 \end{array}$ The division is over since there are no more digits in the dividend. The quotient is 29 .

Step 4: A remainder in any of the place values

After the previous step has been mastered, students then practice long division with three-and four-digit numbers where they will have to go through the basic steps several times.

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} h t \circ \\ 2 \longdiv { 1 } \\ 2 \longdiv { 2 7 8 } \end{gathered}$ Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	$\begin{aligned} & \quad \mathrm{hto} \\ & 2 \longdiv { 1 } \begin{array} { l } { \frac { 2 } { - 2 } } \\ { - \frac { 2 } { 0 } } \end{array} \end{aligned}$ Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	$\begin{aligned} & h t o \\ & 28 \\ & 2 \longdiv { 2 7 8 } \\ & =\frac{2}{0} \frac{1}{7} \end{aligned}$ Next, drop down the 7 of the tens next to the zero.
Divide.	Multiply \& subtract.	Drop down the next digit.
$\begin{gathered} \quad \mathrm{hto} \\ 13 \\ 2 \longdiv { 2 7 8 } \\ =\frac{2}{07} \end{gathered}$ Divide 2 into 7. Place 3 into the quotient.	$\begin{gathered} h t o \\ 2 \longdiv { 2 7 8 } \\ =\frac{2}{0} 7 \\ =\frac{6}{1} \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	$\begin{gathered} \mathrm{hto} \\ 13 \\ 2 \longdiv { 2 7 8 } \\ =\frac{2}{07} \\ =\frac{6}{18} \end{gathered}$ Next, drop down the 8 of the ones next to the 1 leftover ten.
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} h t o \\ 139 \\ 2 \longdiv { 2 7 8 } \\ =\frac{2}{07} \\ =\frac{6}{18} \end{gathered}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{array}{r} h t o \\ 2 \longdiv { 2 7 8 } \\ =\frac{2}{07} \\ =\frac{6}{18} \\ \frac{-18}{0} \end{array}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	$\begin{aligned} & h t o \\ & 2 \longdiv { 1 3 9 } \\ & 278 \\ & =\frac{2}{07} \\ & =\frac{6}{18} \\ & \frac{-18}{0} \end{aligned}$ There are no more digits to drop down. The quotient is 139 .

Notes for all calculations:
It is vitally important that children begin to use known facts and derive new facts from these as soon as possible.

Eg.
If I know that $2+3=5$, then I also know that $3+2=5$.
From this I can work out that $5-3=2$ and $5-2=3$.
I can also see that $20+30=50, \quad 30+20=50,50-30=20 \& 50-20=30$

Children need to understand the relationship between operations. Eg. subtraction is the opposite of addition, and division is the opposite of multiplication.

> This bar model shows the relationship between addition and subtraction.
> $a+b=c$
> $b+a=c$
> $c-a=b$
> $c-b=a$

> This bar model shows the relationship between
> multiplication and division.
> $5 \times n=\mathrm{p}$
> $\mathrm{p} \div 5=\mathrm{n}$

